Heat Transfer to Immiscible Liquid Mixtures in a Spiral Plate Heat Exchanger
نویسندگان
چکیده
This work presents new predictive correlations for heat transfer to immiscible liquid-liquid mixtures in a spiral plate heat exchanger. Liquid-liquid heat transfer studies were carried out in spiral plate heat exchangers for the water-octane, water-kerosene, and water-dodecane systems. For each composition of the mixture, the mass flow rate of the cold fluid was varied, keeping that of the hot fluid and the fluid inlet temperatures constant. Two-phase cold flow rates were in the laminar range, while the hot fluid flow was turbulent. Calculations of the LMTD (log mean temperature difference) correction factor showed that the flow was countercurrent. Heat transfer coefficients of the two-phase liquids were found to be strongly dependent on the composition of the liquid mixture and exhibited abrupt transitions as a function of the compositions. Given the absence of predictive correlations in the literature that sufficiently capture this compositiondependence, new empirical correlations were developed using part of the experimental data, with the composition of the cold fluid as an explicit variable. Statistical analysis of the regression yielded satisfactory results. The correlations were tested against the rest of the experimental data and were found to predict heat transfer coefficients within ± 15%. These preliminary studies should be useful in designing compact exchangers for handling two-phase water-organics mixtures.
منابع مشابه
Heat transfer enhancement in a spiral plate heat exchanger model using continuous rods
This study presents an innovative and simple way to increase the rate of heat transfer in a spiral plate heat exchanger model. Several circular cross-section rods, as continuous vortex generators, have been inserted within the spiral plate heat exchanger in the cross-stream plane. The vortex generators are located at various azimuth angles of α=30◦, 60◦, 90◦, and 120◦ with non-dimensional diame...
متن کاملExperimental Analysis of Heat Transfer and Friction Factor in Plate Heat Exchanger with Different Orientations Using Al2O3 Nanofluids
Experimental investigations has been done to find out the heat transfer characteristics and friction factor of water based Al2O3 nanofluids as a coolant in brazed plate heat exchanger. Plate heat exchanger either use horizontally or vertically. The base plate of the plate heat exchanger was kept inclined at (0⁰, 30⁰ ,60⁰, 90⁰). The experimentation have been done on the two different concentrat...
متن کاملHeat Transfer Analysis of Nanofluid in a Sine Wave Plate Heat Exchanger
Heat transfer is one of the most critical processes in the industry, and by increasing the efficiency of the heat exchanger, energy consumption of systems will be reduced. Very tiny particles in nanoscale dimensions, when uniformly dispersed and stably suspended in the base fluid, efficiently improve the thermal properties of the base fluid. With the help of nanofluids, the heat transfer rate i...
متن کاملExperimental and Numerical Analysis of Flow and Heat Transfer in a Gas-Liquid Thermosyphon Heat Exchanger in a Pilot Plant
A numerical and experimental investigation of flow and heat transfer in a gas- liquid Thermosyphon Heat Exchanger "THE" with built in heat pipes and aluminum plate fins for moderate Reynolds numbers has been carried out. It's module is composed of 6 rows and 15 columns copper pipes with aluminum plate fins with dimensions of 130cm height, 47cm width and 20cm depth. The tubes have been fill...
متن کاملCalculation of Heat Transfer Coefficient of MWCNT-TiO2 Nanofluid in Plate Heat Exchanger
The objective of the present study is the synthesis of MWCNT-TiO2 hybrid nanostructures by solvothermal synthesis method with TiCl4 as precursor. The heat transfer enhancement due to the use of MWCNT-TiO2 nanofluid was investigated. As-prepared hybrid materials were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results showed that MWCNTs were uniformly dec...
متن کامل